
• Using Karnaugh maps

• Second Canonical form

• Conversion to NAND or to NOR gate 

representation



•Sometimes, the output for certain inputs will not matter (e.g. certain

input combinations may never occur).

•Such outputs are known as ‘don’t care’ terms and can be made

either 0 or 1 depending which aids the minimisation process.

Incompletely specified functions - ‘Don’t care’ terms

Truth table

Don’t care terms

These input 

combinations do 

not occur in 

practice



Example: BCD decoder for seven-segment display.

In four-bit BCD there are only 10 out of 16 combinations which are

useful for representing decimal digits. The outputs of the six higher

combinations should be treated as ‘don’t care’ ones.

Incompletely specified functions - ‘Don’t care’ terms



Example: BCD decoder for seven-segment display.

Incompletely specified functions - ‘Don’t care’ terms

Decimal

0

1

2

3

4

5

6

7

8

9

These 

combinations 

are never used



Using ‘Don’t care’ terms

• One can choose the ‘don’t care’ term to be ‘0’ or ‘1’,

depending what would help to minimise the expression

(to wrap more terms in Karnaugh map).

• No need to use all the ‘don’t care’ terms.

Truth table



Using ‘Don’t care’ terms

One can choose the don’t care term to be ‘0’ or ‘1’,

depending what would help to minimise the expression

(to wrap more terms in Karnaugh map)

Truth table



Using Karnaugh maps

Karnaugh maps can be transposed.

But the order of rows/columns must be 

preserved (only one variable changes 

between the adjacent terms). 



Karnaugh maps can be transposed

Using Karnaugh maps

AB

CD



Adjacencies in the Karnaugh map: only one bit is 

changing between the neighbouring cells

Using Karnaugh maps: keep the right sequence of rows/columns



Using Karnaugh maps

Looping cells: aim to wrap together as much cells as possible



Note in which cases you need to use the wrap-arounds

Using Karnaugh maps



Using Karnaugh maps

•The changing variable disappears: explore both horizontal 

and vertical  directions where appropriate

•Consider each term only once



Second canonical form: product of sum

M = (a+b+m+s)(a+b+m+s’)...

... (a’+b’+m’+s) 

maxterms

product of sums

a + b + m + s
a + b + m + s’
a + b + m’ + s
a + b + m’ + s’
a + b’ + m + s
a + b’ + m + s’
a + b’ + m’ + s

a’ + b + m + s
a’ + b + m + s’
a’ + b + m’ + s

a’ + b’ + m + s
a’ + b’ + m + s’
a’ + b’ + m’ + s

We will use the same truth table as for the conveyor example for 1st canonical form.

But this time we will look at ‘zero’ outputs.



Second canonical form: product of sum

M = (a+b+m+s)(a+b+m+s’) ... (a’+b’+m’+s) =

Code the maxterms with binaries:   0000      0001    ...    1110 

Replace the binaries with decimal equivalents:  0        1    ...    14 

Finally arrive with short form of logic expression :

M = P (0,1,2,3,4,5,6,8,9,10,12,13,14)

Second canonical form or product of sum (POS)



Simplifying maxterm expressions

Loading and grouping maxterms is exactly the same as loading and

grouping minterms, except that

• ‘0’s are loaded instead of ‘1’s

• terms are sums not products

G  =  f (a, b, c, d) = P (0, 4, 5, 7, 8, 9, 11, 12, 13, 15) 



Exercises: 

1. A logic circuit has inputs A, B, C and D. The output of circuit is given by

E = S (1, 3, 4, 5, 7, 10, 12, 13)

Find the minimum product of sum (2nd canonical) for E.

Answer:  E = (A’+B’+C’)(A’+B+D’)(A+C’+D)(B+C+D) or E = (A’+B+C)(A+B+D)(A’+C’+D’)(B’+C’+D) 

2. Construct the Karnaugh maps and find the minimum POS and SOP 

expressions for each of the following logic functions:

(a) Z = W’X’Y’ + W’XY’ + WX’Y + WXY

(b) D = A’B’C’ + AB’C’ + A’B’C + AB’C + A’BC

(c) E = A’BCD’ + ABC’D’ + ABC’D + ABCD’

Answers:

SOPs: (a) Z=W’Y’+WY; (b) D=B’+A’C; (c) E=ABC’+BCD’.

POSs: (a) (W+Y’)(W’+Y); (b) (A’+B’)(B’+C); (c) E=B(A+C)(C’+D’). 



Conversion between canonical forms

Conversion can be easily done by using the reference set I:

I = (0, 1, 2, 3, 4, 5, 6, 7)

If the minterm set (related to 1-st canonical form or SOP) is m, and the

maxterm (related to 2-nd canonical form or POS) is M then:

M = I – m

Example: F = ∑(0, 5, 6, 7)

M = I – m = (0, 1, 2, 3, 4, 5, 6, 7) - (0, 5, 6, 7) = (1, 2, 3, 4)

hence F = π(1, 2, 3, 4)

M

m



(a) To chose the simplest circuit design – minimal number of gates. 

(b) Engineer often have a task to optimise a logic circuit to work not only 

with minimal gates number but also for particular type of gate.

Why different canonical forms? 

We have seen that the same logical task (conveyor example) 

can be formulated either as  1st or as 2nd canonical form.



Conversion to one type of gates

One of the important implications of De Morgan’s 

theorems is that any logic function can be implemented  

solely with NAND gates (AND + inverter) 

or

with NOR gates (OR + inverter).



Conversion to one type of gates

Any logic operation can be represented as a 

combination of NAND gates:

inverter

( ) AAA =A

A

B

A

B( )BA
AB

( ) BABA +=

A

B

AND gate
OR gate



Conversion to one type of gates

Any logic operation can be represented as a 

combination of NOR gates:

inverter

( ) AAA =+A

A

B

A

B
( )

BABA

BABA

+=+

=+++

BA +

AND gate

OR gate

A

B

( ) ABBA =+



Conversion to one type of gates

How is this done in practice and which type of the 

gate is preferable?

or ?



Conversion to one type of gates: SOP

First canonical form or sum of products (SOP) can be conveniently 

represented with NAND gates only:

F = AB + CD

Applying De Morgan’s theorem: F’=(AB)’(CD)’ Applying De Morgan’s 

theorem again: 

F’’ = F =((AB)’(CD)’)’

A

B

D

C

((AB)’(CD)’)’



Conversion to one type of gates: POS

Second canonical form or product of sum (POS) can be conveniently 

represented with NOR gates only:

F = (A+B)(C+D)

Applying De Morgan’s theorem: F’=(A+B)’ + (C+D)’ 

Applying De Morgan’s theorem again: 

F’’ = F =((A+B)’ + (C+D)’)’

A

B

C

D

((A+B)’ + (C+D)’)’



Self- assessment

• What characteristics define a combinational logic circuit?

• What are product terms and sum terms?

• What are two forms that can be used to describe the operation of a 

combinational logic circuit?

• How does the number of columns and rows in a truth table relate to the 

number of input and output variables?

• What is meant by a canonical form, and how are they related to the outputs 

from a truth table?

• What is the effect of minimising of a canonical form?

• Why can Karnaugh maps be used for ‘visually’ minimising Boolean 

expressions? 


